Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Environ Pollut ; 305: 119312, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1796873

ABSTRACT

Reuse of sewage sludge is a general trend and land application is an essential way to reuse sludge. The outbreak of coronavirus disease has raised concerns about human pathogens and their serious threat to public health. The risk of pathogenic bacterial contamination from land application of municipal sludge has not been well assessed. The purpose of this study was to investigate the presence of pathogenic bacteria in municipal sewage sludge and to examine the survival potential of certain multidrug-resistant enteroaggregative Escherichia coli (EAEC) strain isolated from sewage sludge during heat treatment. The sewage sludge produced in the two wastewater treatment plants contained pathogenic bacteria such as pathogenic E. coli, Shigella flexneri, and Citrobacter freundii. The environmental strain of EAEC isolated from the sludge was resistant to eight types of antibiotics. It could also enter the dormant state after 4.5 h of treatment at 55 °C and regrow at 37 °C, while maintaining its antibiotic resistance. Our results indicate that the dormancy of EAEC might be why it is heat-resistant and could not be killed completely during the sludge heat treatment process. Owing to the regrowth of the dormant pathogenic bacteria, it is risky to apply the sludge to land even if the sludge is heat-treated, and there is also a risk of spreading antibiotic resistance.


Subject(s)
Escherichia coli Infections , Escherichia coli , Anti-Bacterial Agents/toxicity , Escherichia coli Infections/epidemiology , Hot Temperature , Humans , Sewage/microbiology
2.
Sci Total Environ ; 829: 154585, 2022 Jul 10.
Article in English | MEDLINE | ID: covidwho-1740170

ABSTRACT

Antibiotics, widely known as major environmental xenobiotics, are increasingly being released into ecosystems due to their essential functions in human health and production. During the COVID-19 pandemic waves, antibiotic use increases remarkably in treating bacterial coinfections. Antibiotics were initially expected only to affect prokaryotes, but recent research has shown that they can disturb the biological systems of eukaryotes, especially vulnerable aquatic creatures, through both direct and indirect processes. However, their toxicity to the freshwater cladoceran Simocephalus vetulus, an essential link in the aquatic food web, has never been evaluated. The effects of four fluoroquinolones (ciprofloxacin: CFX, ofloxacin: OFX, gatifloxacin: GFX, delafloxacin: DFX), tetracycline (TET), and a mixture of these medicines (MIX) on S. vetulus thoracic limb rate (TLR) were examined in this study. After S. vetulus was exposed to 20 and 40 mg GFX L-1, 90% and 100% mortality rates were recorded. At 2.5-10 mg L-1, GFX dramatically lowered the TLR of S. vetulus, resulting in a median effective concentration of 9.69 mg L-1. TLRs increased when the organisms were exposed to 10-40 mg L-1 of CFX and 1.25-40 mg L-1 of OFX. However, DFX and TET exposures did not affect TLRs. Exposure to MIX reduced TLR only at 40 mg L-1, suggesting an antagonistic interaction among the five pharmaceuticals. This study demonstrated that S. vetulus physiological responses to antibiotics, even in the same class, are complex and elusive. Beyond a common additive concentration principle, the antagonistic interaction of antibiotic mixture indicates a high level of uncertainty in terms of ecological dangers. We initially introduce S. vetulus to ecotoxicological studies of antibiotics, presenting the species as a low-cost model for physiological investigations of environmental xenobiotics.


Subject(s)
COVID-19 , Cladocera , Water Pollutants, Chemical , Animals , Anti-Bacterial Agents/toxicity , Cladocera/physiology , Ecosystem , Humans , Pandemics , Water Pollutants, Chemical/toxicity , Xenobiotics
3.
Chemosphere ; 274: 129900, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1071151

ABSTRACT

The burden of the human immunodeficiency virus and acquired immunodeficiency syndrome (HIV/AIDS) infection has transformed the African continent into a major consumer of antiretrovirals (ARVs) drugs. In addition to HIV burden, the African continent has also a high incidence of tuberculosis (TB) and has been experiencing recurring outbreaks of several other viral, bacterial, and parasitic epidemic diseases. The novel severe acute respiratory syndrome coronavirus 2 (SARS-COV-2 or Covid-19) pandemic outbreak is adding to the continent's infectious diseases burden as experts are predicting that it will be here for a long time. One of the consequences of these infectious diseases is that antiviral and antibiotic compounds have become some of the most consumed pharmaceuticals on the continent. Many of these drugs have been frequently detected in surface waters across Africa. There is limited information available on the adverse effects of the mixtures of different types of pharmaceuticals in African aquatic environments on fish reproduction. The present study investigated the effects of the ARV drug nevirapine (NVP - 1.48 and 3.74 µg/L) and its mixture with the antibiotic sulfamethoxazole (3.68 µg/L) and trimethoprim (0.87 µg/L) on O. mossambicus gonads using histopathological endpoints as biomarkers. The fish (n = 52) were exposed for 30 days in a static renewal system. Female O. mossambicus exposed to nevirapine (3.74 µg/L) and to NVP - antibiotic mixture recorded higher ovary indices. Statistically significant differences were found in female ovary indices between the fish exposed to NVP (3.74 µg/L) and the control fish (p = 0.002) as well as between the fish exposed to the NVP - antibiotic mixture and the control fish (p = 0.009). The main observed histopathological changes in the ovaries were increased vitellogenic oocyte atresia and vacuolation of the interstitial tissue in the fish exposed to NVP - antibiotic mixture. It is evident that the presence of NVP - antibiotics mixture in water triggered the observed histopathology in female fish ovaries. The detected abnormal high rate of atretic oocytes could result in impaired fish reproduction.


Subject(s)
COVID-19 , HIV Infections , Pharmaceutical Preparations , Tilapia , Africa , Animals , Anti-Bacterial Agents/toxicity , Female , Humans , Nevirapine/toxicity , Ovary , SARS-CoV-2 , Sulfamethoxazole , Trimethoprim/toxicity
4.
Sci Total Environ ; 765: 144264, 2021 Apr 15.
Article in English | MEDLINE | ID: covidwho-989203

ABSTRACT

Quaternary ammonium compounds (QAC, e.g., cetyltrimethylammonium bromide, (CTAB)) are widely used as surfactants and disinfectants. QAC already are commonly found in wastewaters, and their concentration could increase, since QAC are recommended to inactivate the SARS-CoV-2 (COVID-19) virus. Exposure of bacteria to QAC can lead to proliferation of antibiotic resistance genes (ARG). In particular, O2-based membrane biofilm reactors (O2-MBfRs) achieved excellent CTAB biodegradation, but ARG increased in their biofilms. Here, we applied meta-transcriptomic analyses to assess the impacts of CTAB exposure and operating conditions on microbial community's composition and ARG expression in the O2-MBfRs. Two opportunistic pathogens, Pseudomonas aeruginosa and Stenotrophomonas maltophilia, dominated the microbial communities and were associated with the presence of ARG. Operating conditions that imposed stress on the biofilms, i.e., limited supplies of O2 and nitrogen or a high loading of CTAB, led to large increases in ARG expression, particularly for genes conferring antibiotic-target protection. Important within the efflux pumps was the Resistance-Nodulation-Division (RND) family, which may have been active in exporting CTAB from cells. Oxidative stress appeared to be the key factor that triggered ARG proliferation by selecting intrinsically resistant species and accentuating the expression of ARG. Our findings suggest that means to mitigate the spread of ARG, such as shown here in a O2-based membrane biofilm reactor, need to consider the impacts of stressors, including QAC exposure and stressful operating conditions.


Subject(s)
Anti-Bacterial Agents , COVID-19 , Anti-Bacterial Agents/toxicity , Biofilms , Cetrimonium , Drug Resistance, Microbial/genetics , Humans , Microbial Sensitivity Tests , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL